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Abstract
Photonic crystals are described. A numerical method for calculating the band-structures for such crystals is explained,
and the appearance of forbidden frequency gaps is shown. This is used to explain the principle of a completely new
kind of optical fibers with novel qualities. It is found that these fibers may guide light along a low index air-column, in
accordance with the fact that they do not guide by total internal reflection.

Introduction
The forbidden electron energy gaps in semiconductor crystals
have led to the tremendous success of semiconductor devices. In
1987 Yablonovitch suggested that, by analogy, periodic dielec-
tric structures could exhibit photonic bandgaps1 (PBGs), that is
frequency intervals where no extended electromagnetic solutions
exist. One of the appealing aspects of this is that by embedding
an excited atom in such a properly designed periodic material (a
photonic crystal) the relaxation rates of the atom may signifi-
cantly be altered. The requirement for this is a spectral overlap
between the relaxational transitions of the atom and the PBG of
the photonic crystal. Hereby, the number of states available for
the excited atom to couple to may be dramatically reduced.2 As
well as for single atoms, photonic crystals may be used for spon-
taneous emission control in semiconductors. This potential of
emission control has led to a large research interest in photonic
crystals for use in low-threshold lasers.3-5

Another very exciting aspect of photonic bandgap materials is
their potential of providing new means of electromagnetic
waveguiding. An electromagnetic field reaching the surface of a
photonic crystal, with a frequency inside a PBG of the crystal
will be reflected back by Bragg-diffraction. However, by locally
breaking the periodicity of the photonic crystal (creating a so-
called defect), localized field solutions (with frequencies falling
inside the bandgap of the bulk photonic crystal) may exist in this
spatial defect. It has recently been demonstrated that by this prin-
ciple, it is possible to guide electromagnetic waves around 90o

sharp bends with 100% transmission in a photonic crystal con-
figuration, where the periodicity is restricted to two dimensions.6,7

Although not demonstrated at optical wavelengths, but only at
millimeter waves, such planar waveguides appear very interest-
ing for future large-scale integrated optics. The problems related
to the realization of photonic crystals operating at optical wave-
lengths is the requirements of large index contrasts between the
constituting materials as well as a very precise material morphol-
ogy with a periodicity on the scale of the optical wavelength.
These requirements have proven very difficult to achieve for pla-
nar photonic crystal structures. However, in another type of PBG
waveguide also having a two-dimensional periodicity, light may
be guided along the invariant direction of the crystal. This type
of design is favorable for long distance waveguiding, and known

as photonic crystal fibers.8,9 Very recently such waveguides have
been used for the first experimental demonstration of waveguid-
ing by the photonic bandgap effect at optical wavelenghts.10 We
believe that these new waveguides have a large potential in both
telecommunication and sensor areas, and we will be addressing
the underlying physical principles of their operation in this arti-
cle.

Theory
In 1990 the first efficient method for calculating photonic band-
gap structures of photonic crystals was described.11 This method
basically assumes the crystal to extend indefinitely in space. Then
any solution is extended, and can be described as a sum of plane
waves, due to the crystal periodicity.

A two dimensional photonic crystal is a dielectric structure which
is periodic in two dimensions, and invariant in the third dimen-
sion, see Fig. 1.
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Fig. 1. The geometry of a 2D photonic crystal. The periodicity of the
structure is described through the two simple lattice vectors R
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In this case they define a triangular lattice structure. The invariant
direction is normal to the plane defined by the lattice vectors.



The lattice defining the periodicity of the structure is defined by
its lattice vectors R=n
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Then extended field solutions inside the crystal may be described
as a plane wave multiplied by a Bloch function with the same
discrete translational symmetry as the lattice structure.12 There-
fore, any extended field solution (exemplified by the magnetic
field) can be written as the infinite sum:
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Here G defines the reciprocal lattice, G×R=N 2p, where N is an
integer. The vector (k+G) and the unit vectors e

1
(k+G) and

e
2
(k+G) define a triad.13 k is the wavevector of the plane wave.

The actual field (and eigenfrequencies), is found by expressing
Maxwell�s equations in the form of a Hermitian operator equa-
tion:
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To solve this equation we Fourier-transform the inverse dielec-
tric function 1/e(r) as well:
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Here a
c
 is indicated in Fig. 1 and the sum is in principle over all

possible G vectors. One finds the dielectric constants, by either
using an FFT, or by finding analytical expressions for the Fouri-
er coefficients. We have used the latter technique, finding the
analytical expressions by an enhancement of the method given
in Ref. [14].

For a given choice of the reciprocal lattice vector G we then find
the following dependency from (1) and (2):
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where L=|k+G| |k+G´|. Inside the matrices the operand is the
vector (k+G´) if a prime (´) is given, and the vector (k+G) if no
prime is given. We write N such equations (one for each of the N
shortest G vectors), truncating the sum to the same N G vectors,
Gi=G´, to obtain a simple Hermitian eigenvalue matrix equation
using a basis of N plane waves.

The first Brillouin zone is the set of points in the reciprocal lat-
tice plane, which are closer to the lattice grid point G=0, than to
any other reciprocal lattice grid points (see Fig. 2). The first Bril-
louin zone can be constructed from the irreducible Brillouin zone
(shown with dark shading in Fig. 2) through the use of mirroring
and rotational symmetry.12 For finding the possible PBGs of a
photonic crystal, one solves the eigenvalue-problem for all the
different values of kp (kp is k projected on the plane defined by
the reciprocal lattice vectors) along the boundary of the irreduc-

ible Brillouin zone12,15 (see Fig. 2). Any frequency intervals, where
no solutions are found define the PBGs of the photonic crystal.

For propagation restricted to the plane defined by the lattice vec-
tors R (that is k=kp) the two different plane wave directions in
(4) decouple into TM solutions (j=1 corresponding to the e

2
×e

2
´)

and TE solutions (j=2 corresponding to the term e
1
×e

1
´). Here we

define TM solutions as solutions having the electric field along
the invariant direction, while TE solutions have the electric field
in the plane defined by the lattice vectors. For k¹kp the equa-
tions no longer decouple, and the complete set of equations in
(4) must be solved.

We conclude that for a given wave-vector we need to solve an
N´N eigenvalue problem for in-plane propagation, while a full
three dimensional field analysis demands the solution of a 2N´2N
eigenvalue problem. In any case the computational demands in-
creases quickly with the number of plane waves used. However,
one may obtain better convergence for a given N, by creating the

dielectric matrix ε
* *− ′ , inverting this matrix to give η

* *− ′ , and

then replacing ε
* *− ′
−1

 with η
* *− ′ .16,17 This is commonly called the

Ho method.11 For our purpose this technique greatly reduces the
computational time, since we only need one matrix inversion for
each structure, while a large number of matrix equations need to
be solved.

Basic photonic crystal results
When propagation is restricted to the plane defined by the lattice
vectors (TE- or TM-case) it has been found that a quite large
refractive index contrast must exist for PBGs to appear. To ob-
tain a complete PBG (a PBG for arbitrary in-plane polarization),
it has been found that one needs a refractive index ratio of at
least 2.66.18 An example of a photonic crystal exhibiting a PBG,
is a GaAs substrate (refractive index 3.6), with a triangular ar-
rangement of circular air-columns. The band diagram for such a
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Fig. 2. Construction of the first Brillouin zone shown with light shad-
ing. The dark spots represent the reciprocal lattice points. The Bril-
louin zone is the set closest to 0. The irreducible Brillouin zone is shown
with dark shading. In this case the periodicity is described by a trian-
gular lattice.
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structure is shown in Fig. 3. The first axis shows kp along the
boundary of the irreducible Brillouin zone. Notice the symmetry
points, 0, M, and X, defined in Fig. 2. The numbers on the sec-
ond axis show the normalized frequency, L/l, where L is the
distance between the centers of neighboring air-columns and l
is the free space wavelength. It is noted that there is both a TE
and a TM PBG. These overlap to give a complete PBG from l=
L/0.43 to l=L/0.52.

For k¹kp (we shall call this out-of-plane propagation), we may
still find PBGs.19 We denote the wavevector component in the
invariant direction of the photonic crystal, the propagation con-
stant b. This definition is consistent with the propagation con-
stant of standard optical fibers, since the fiber is in principle in-
finitely long in this direction. We, therefore, find the PBGs for a

given value of b, by varying kp along the boundary of the irre-
ducible Brillouin zone as before.

An interesting aspect of out-of-plane propagation is that it has
been reported that PBGs can be found for much smaller refrac-
tive index ratios than for in-plane propagation. Thus PBGs have
been reported for circular air-columns in silica (with a refractive
index of 1.45).8 In Fig. 4 two such PBGs are shown. Notice that
when b ¹ 0 there is a minimum frequency below which no ex-
tended solutions exist. This is similar to the radiation line of a
homogeneous material, and corresponds to the effective refrac-
tive index of the cladding in a standard optical fiber.

Photonic crystal fibers
The concept of a photonic crystal fiber (PCF) was originally pro-
posed by Russell and co-workers, based on the finding of com-
plete PBGs in silica with circular air-columns.8 The structure
found to exhibit PBGs was a triangular structure as the one un-
derlying Fig. 4 except that the air-filling fraction was only 45%.
In Ref. 8 it was, therefore, suggested to make a fiber consisting
of a silica/air cladding with a defect added which should break
the periodicity. Such a defect could be the exclusion of the cen-
tral air-column in a triangular structure.

It was quickly realized that it was difficult to produce fibers with
sufficiently large air-columns for PBGs to appear.20,21 However,
the fibers produced still guided light along the defect-core, which
was explained by the core having a higher effective refractive
index, than the surrounding cladding. These fibers, therefore,
guide by the well-known effect of total internal reflection (TIR).
Albeit this, they do exhibit many unusual properties compared
with traditional optical fibers, e.g. they can be made singlemode
at all frequencies.20
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Fig. 3. Triangular lattice structure with circular air holes on a GaAs
background with the refractive index 3.6. The air holes have diameter
0.48 L, where L is the lattice constant. k=kp (in plane propagation),
and the bands are split up into TE and TM modes. A complete photonic
bandgap is found between w

min
 and w

max
 corresponding to L/l = 0.43 -

0.52.
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Fig. 4. Band-structure in a triangular lattice structure consisting of air
rods on a silica background (refractive index=1.45). The filling frac-
tion of air is 65 %. b = (4p)/L. Two photonic bandgaps are indicated.
Notice that a minimum frequency limit exists below which no extended
solutions exist for b ¹ 0.

Fig. 5. PCF design with a honeycomb cladding structure. The low in-
dex core is seen at the center of the fiber.

For the realization of truly PBG guiding fibers, we have recently
presented a new PCF design22,23 and this has proven successful
for the experimental demonstration of PBG waveguiding.10 In-
stead of using a triangular structure, we suggested using a hon-
eycomb structure with an extra air-column added at the center to
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act as a core-defect (see Fig. 5). We found this cladding structure
to exhibit PBGs for far smaller air-columns than the triangular
PCF design. Further beneficial, the air defect-core has a lower
effective refractive index than the surrounding cladding. Guid-
ance by TIR is, therefore, not possible using this design. Howev-
er, we have found the honeycomb structure to exhibit PBGs for
realistic air-column sizes. The honeycomb fiber design thus sat-
isfies the basic requirements for realizing a PBG waveguide. Even
though the honeycomb cladding structure is reminiscent of the
triangular cladding structures in Ref. 20 and 21 the guiding prin-
ciple is, therefore, fundamentally different.

Instead of showing band diagrams for a number of different b
values, we choose to depict the fiber index b/k as a function of
the normalized wavelength l/L, where L is the distance between
neighboring air-column centers. Such a depiction is shown for
the case where the diameter of the cladding air-columns is 0.55
L, and the core-column has a diameter of 0.33 L.

The radiation line at the top is the lowest frequency solution for
a given value of b. Above this line is a semi-infinite �bandgap�,
where no extended field solutions exist. In a standard optical
fiber this line corresponds to the refractive index of the cladding
as a function of frequency. From this it is understood that the
guided TIR modes of PCFs with a high index core, are squeezed
in between the radiation line, and the refractive index of silica.

Below the radiation line is depicted two PBGs (with their bound-
aries shown in dotted lines). These are complete PBGs with no
analogy to standard optical fibers. Inside the PBGs are shown
the localized modes. These modes are not extended solutions of
the cladding structure - since no extended solutions exist inside
the PBGs. Instead they are solutions localized to the vicinity of
the core-defect.

From Fig. 6 it is seen that the fiber has a guided mode which
traverses the �first� bandgap from l/L»0.3. Guided modes are
also seen to �start� inside the �second� bandgap at l/L»0.35. These
are actually several different modes, which lie close in frequen-
cy. These modes extend to quite high frequencies l/L»0.1.

Here we are particularly interested in the degenerate mode in the
first bandgap, since the fiber is monomode here. The large down-

ward bending of the core-mode at large wavelengths suggests
that this type of fiber may make it possible to have fibers with
large dispersion24 (D=-l/c (d2n/dl2), which is truly a remarkable
feature. At shorter wavelengths there appear to be a small up-
ward bending suggesting that also near-zero dispersion below
zero is possible. It, therefore, appears that completely new dis-
persion management systems are possible using these fibers.

Also notice that the index difference between the guided mode
and the nearest cladding mode (The PBG-boundary) is quite large
when l/L»1. This led us to expect good bending properties for
these fibers. Furthermore, the all-silica principle of these optical
fibers should give low scattering losses. Finally, it is noticed that
the mode-index is well below 1.45. This suggest that new sensor
systems may be possible using these fibers.

To verify that the field is localized in the low-index core region,
we show the calculated field for l/L»1 in Fig. 7. Guiding light
by the PBG effect, it becomes possible to guide light in low in-
dex regions.6

To summarize, it can be said that PBG guiding optical fibers
form a new class of optical fibers. It should, however, be appar-
ent that this completely new guiding principle offers novel pos-
sibilities in optical fiber technology.9,25,24 Only the future can tell
exactly how important these possibilities will become for the fab-
rication of optical fibers.
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